Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 230(4): e13514, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32476256

RESUMO

AIM: MRP2 is an intestinal ABC transporter that prevents the absorption of dietary xenobiotics. The aims of this work were: (1) to evaluate whether a short-term regulation of intestinal MRP2 barrier function takes place in vivo after luminal incorporation of nutrients and (2) to explore the underlying mechanism. METHODS: MRP2 activity and localization were assessed in an in vivo rat model with preserved irrigation and innervation. Nutrients were administered into distal jejunum. After 30-minutes treatments, MRP2 activity was assessed in proximal jejunum by quantifying the transport of the model substrate 2,4-dinitrophenyl-S-glutathione. MRP2 localization was determined by quantitative confocal microscopy. Participation of extracellular mediators was evaluated using selective inhibitors and by immunoneutralization. Intracellular pathways were explored in differentiated Caco-2 cells. RESULTS: Oleic acid, administered intraluminally at dietary levels, acutely stimulated MRP2 insertion into brush border membrane. This was associated with increased efflux activity and, consequently, enhanced barrier function. Immunoneutralization of the gut hormone glucagon-like peptide-2 (GLP-2) prevented oleic acid effect on MRP2, demonstrating the participation of this trophic factor as a main mediator. Further experiments using selective inhibitors demonstrated that extracellular adenosine synthesis and its subsequent binding to enterocytic A2B adenosine receptor (A2BAR) take place downstream GLP-2. Finally, studies in intestinal Caco-2 cells revealed the participation of A2BAR/cAMP/PKA intracellular pathway, ultimately leading to increased MRP2 localization in apical domains. CONCLUSION: These findings reveal an on-demand, acute regulation of MRP2-associated barrier function, constituting a novel physiological mechanism of protection against the absorption of dietary xenobiotics in response to food intake.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Peptídeo 2 Semelhante ao Glucagon , Animais , Células CACO-2 , Humanos , Mucosa Intestinal , Nutrientes , Ratos , Ratos Wistar
2.
Biochimie ; 165: 179-182, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31377196

RESUMO

Multidrug resistance-associated protein 2 (MRP2/ABCC2), a hepatocyte canalicular transporter involved in bile secretion, is downregulated in cholestasis triggered by lipopolysaccharide. The human aquaporin-1 (hAQP1) adenovirus-mediated gene transfer to liver improves cholestasis by incompletely defined mechanisms. Here we found that hAQP1 did not affect MRP2/ABCC2 expression, but significantly increased its transport activity assessed in situ with endogenous and exogenous substrates, likely by a hAQP1-induced increase in canalicular membrane cholesterol amount. Our results suggest that hAQP1-induced MRP2/ABCC2 activation contributes to the cholestasis improvement.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aquaporina 1/fisiologia , Bile/metabolismo , Colestase/metabolismo , Hepatócitos/metabolismo , Animais , Aquaporina 1/genética , Colestase/terapia , Técnicas de Transferência de Genes , Hepatócitos/citologia , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Ratos Wistar
3.
Pharmacol Res ; 109: 32-44, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27109321

RESUMO

The gastrointestinal epithelium functions as a selective barrier to absorb nutrients, electrolytes and water, but at the same time restricts the passage into the systemic circulation of intraluminal potentially toxic compounds. This epithelium maintains its selective barrier function through the presence of very selective and complex intercellular junctions and the ability of the absorptive cells to reject those compounds. Accordingly, the enterocytes metabolize orally incorporated xenobiotics and secrete the hydrophilic metabolites back into the intestinal lumen through specific transporters localized apically. In the recent decades, there has been increasing recognition of the existence of the intestinal cellular barrier. In the present review we focus on the role of the multidrug resistance-associated protein 2 (MRP2, ABCC2) in the apical membrane of the enterocytes, as an important component of this intestinal barrier, as well as on its regulation. We provide a detailed compilation of significant contributions demonstrating that MRP2 expression and function vary under relevant physiological and pathophysiological conditions. Because MRP2 activity modulates the availability and pharmacokinetics of many therapeutic drugs administered orally, their therapeutic efficacy and safety may vary as well.


Assuntos
Intestinos/fisiologia , Intestinos/fisiopatologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Animais , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...